Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 10th World Congress and Expo on Cell & Stem Cell Research New York, USA.

Day 1 :

Keynote Forum

Diana Anderson

University of Bradford, UK

Keynote: Oxaliplatin-induced Oxidative Stress in Isolated Spermatogonial Stem cells

Time : 09 : 00

Stem Cell Research 2018 International Conference Keynote Speaker Diana Anderson photo
Biography:

Diana Anderson (H index 54) holds the Established Chair in Biomedical Sciences at the University of Bradford. She obtained her first degree in the University of Wales and second degrees in the Faculty of Medicine, University of Manchester. She has 450+ peer-reviewed papers, 9 books, has successfully supervised 30 PhDs, is an Editorial Board Member of 10 international journals. She is Editor-in-Chief of a book series on Toxicology for the Royal Society of Chemistry. She gives key note addresses at various international meetings. She is a consultant for many international organisations, including WHO, EU, NATO, TWAS, UNIDO, OECD.

Abstract:

Spermatogonial stem cells (SSCs) are responsible for transmission of genetic information from males to their progeny. SSCs play pivotal roles in spermatogenesis and reproductive biology of gametes and treatment of infertility. Many chemicals have a negative impact on the SSCs, either directly, or indirectly through the somatic nursing cells. Eventually, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Oxaliplatin is a platinum-organic drug with antineoplastic properties used for colorectal cancer and cytotoxicity due to platinum binding to DNA and the formation of intrastrand cross-links between neighbouring guanines. This study was to establish an oxidative stress model for antioxidant activity of some drugs investigated in SSCs in in vitro culture. The effects of oxaliplatin on SSCs were evaluated by standard cytotoxicity assays and the potential biochemical and molecular effects on the antioxidant system. Administration of oxaliplatin showed significant increases in DNA damage, p53 and bcl-2 gene expression levels concomitant with significant decreases in endogenous antioxidant enzymes SOD, CAT and GPx-mRNA gene expression. Glial cell line–derived neurotrophic factor (GDNF) is important for SSC self-renewal in vitro and in vivo, so we also assessed oxaliplatin on GDNF-mediated signalling in these cells and oxaliplatin significantly decreased GDNF-mRNA and associated protein. Oxaliplatin-induced DNA damage causes an increase in intracellular superoxide anions which are reduced by the exogenous antioxidant flavonoid, quercetin. This study highlights evidence that SCCs have antioxidant and antiapoptotic properties that could reverse oxaliplatin-induced testicular toxicity, in addition to their role in spermatogenesis.

Keynote Forum

Haval Shirwan

University of Louisville, USA

Keynote: will be updating soon

Time : 09:30

Stem Cell Research 2018 International Conference Keynote Speaker Haval Shirwan photo
Biography:

Haval Shirwan is Dr. Michael and Joan Hamilton Endowed Chair in Autoimmune Disease, Professor of Microbiology and Immunology, Director of Molecular Immunomodulation Program at the Institute for Cellular Therapeutics. He conducted his Graduate studies at the University of California in Santa Barbara, CA, and Postdoctoral studies at California Institute of Technology in Pasadena, CA. He joined the University of Louisville in 1998 after holding academic appointments at various academic institutions in the United States. His research focuses on the modulation of immune system for the treatment of immune-based diseases with particular focus on type 1 diabetes, transplantation, and development of prophylactic and therapeutic vaccines against cancer and infectious diseases.  He is an inventor on over a dozen of worldwide patents, founder and CEO/CSO of FasCure Therapeutics, LLC, widely published, organized and lectured at numerous national/international conferences, served on study sections for various federal and non-profit funding agencies, and is on the Editorial Board of a number of scientific journals. He is member of several national and international societies and recipient of various awards.

Abstract:

Keynote Forum

Jack A Coleman

Lung institute, USA

Keynote: Cell therapy for chronic lung disease

Time : 10:00

Stem Cell Research 2018 International Conference Keynote Speaker Jack A Coleman photo
Biography:

Jack A Coleman has earned his MD from the University of Cincinnati College Medicine in 1979, did his internship and General Surgery requirement at Cincinnati General Hospital and residency in Otolaryngology - Head and Neck Surgery at the University of Pittsburgh Eye and Ear Hospital as well as a fellowship at English Plastic and Cosmetic Surgery Center. He has been an Assistant Professor at Vanderbilt University and Clinical Assistant Professor at Eastern Virginia Medical School. Currently he is National Medical director for the Lung Institute. He has published over 23 articles in refereed journals, many book chapters and 5 books related to his various interests in medicine as well as national and international guest lecturer.

Abstract:

Keynote Forum

Mari Dezawa

Tohoku University Graduate School of Medicine, JAPAN

Keynote: Endogenous reparative muse cells may provide novel therapeutic approaches

Time : 10:30

Stem Cell Research 2018 International Conference Keynote Speaker Mari Dezawa photo
Biography:

Mari Dezawa is graduated from Chiba University School of Medicine in 1989, and got PhD degree in 1995 at the same institution. She moved to Yokohama City University as Assistant Professor of Dept Anatomy in 2000 where she started to work with mesenchymal stem cells (MSCs). After moving to Kyoto University Graduate School of Medicine as Associate Professor in 2003, she discovered methods to induce neurons and skeletal muscle cells from human MSCs. In 2008, she became Professor and Chair of Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, where she discovered muse cells (PNAS, 2010, PNAS, 2011, Nat Protocol, 2013, JASN, 2017). 

Abstract:

Multilineage-differentiating stress enduring (muse) cells are naturally existing unique endogenous stem cells that are non-tumorigenic and are pluripotent-like. They express pluripotent markers, can generate cells representative of all three germ layers from a single cell and are able to self-renew. Since they express specific receptor for damage signal, they can preferentially home into damaged site after topical injection or intravenous injection with lower entrapment in the lung and spleen. After integration, they replenish lost cells by spontaneous differentiation into tissue-compatible cells, leading to robust tissue and functional regeneration. The unique reparative functions of Muse cells were demonstrated in animal models of liver cirrhosis, partial hepatectomy, stroke, skin ulcer of diabetes mellitus and chronic kidney disease. They do not have to be “induced,” or genetically manipulated, to be pluripotent or be purposive cells before transplantation as required with some other cell varieties. They can be collected as cells positive for SSEA-3, a surface marker for pluripotent stem cells, from readily accessible sources such as the bone marrow (~0.03% of the total mononucleated cell population), and from cultured fibroblasts (several %), as well as from the dermis and adipose tissue. Recently, Muse cells are shown to circulate in peripheral blood in healthy donors, and the number increases in stroke patients in an acute phase, suggesting that endogenous Muse cells are mobilized into peripheral blood to repair tissues while their number is not sufficient to recover, and that supply of exogenous Muse cells is expected to deliver statistically meaningful functional recovery. Overall, Muse cells are a feasible source for cell-based approaches´╝îand may safely provide clinically relevant regenerative effects compatible with the ‘body’s natural repair systems’ by simple cost-effective strategy-collection of Muse cells from sources, large scale expansion and intravenous injection.

 

Stem Cell Research 2018 International Conference Keynote Speaker Esmaiel Jabbari photo
Biography:

Esmaiel Jabbari has completed his PhD at Purdue University and Post-doctoral studies at Monsanto, Rice University, and Mayo Clinic. He is the Director of Tissue Engineering and Drug Delivery Laboratory and Full Professor of Chemical and Biomedical Engineering at University of South Carolina. He received the Berton Rahn Award from AO Foundation in 2012 and the Stephen Milam Award from Oral and Maxillofacial Surgery Foundation in 2008. He was elected to the College of Fellows of AIMBE in 2013. He has published >250 peer-reviewed articles and presented >260 conference lectures. He serves as Academic Editor of PLOS ONE.

Abstract:

Osteogenesis and vascularization during development are coupled by spatiotemporal regulation of paracrine signaling in which the invading vascular endothelial progenitor cells secrete osteogenic morphogens to stimulate cell differentiation and bone formation. Conversely, the committed mesenchymal stem cells (MSCs) in the vicinity of the vascular endothelial cells release vasculogenic morphogens to further stimulate vasculogensis for the metabolically highly active osteoblasts. The objective of this work was to investigate the effect of micro-patterning of mesenchymal stem cells (MSCs) and endothelial colony forming cells (ECFCs) within a 3D hydrogel matrix combined with localized delivery of osteogenic and vasculogenic morphogens BMP-2 and VEGF on synergistic expression of paracrine signaling factors and coupling of osteogenesis and vasculogenesis. Human MSCs and sustained release BMP-2 nanogels were encapsulated in a slow-resorbing polyethylene glycol-based hydrogel matrix containing micro-channels. Next, a combination of human MSCs, human ECFCs, and on-time release VEGF nanogels were delivered to the micro-channels of the matrix in a fast-resorbing galatin-based hydrogel. This approach resulted in spatial patterning of MSCs and ECFCs and spatiotemporal delivery of BMP-2 and VEGF morphogens. The effect of cell and morphogen patterning on vascularized osteogenesis and paracrine signaling was assessed by biochemical, mRNA, protein analysis, and immunofluorescent staining. The localization of MSCs to the matrix and MSCs+ECFCs to the microchannels combined with temporal release of BMP-2 in the matrix and VEGF in the channels sharply increased the expression of paracrine signaling factors basic fibroblast growth factor (bFGF, vasculogenic and osteogenic), platelet-derived growth factor (PDGF, vasculogenic), and transforming growth factor-beta (TGF-β, osteogenic) by the encapsulated human MSCs and ECFCs. These results suggest that osteogenesis and vascularization are coupled by localized secretion of paracrine signaling factors by the differentiating MSCs and ECFCs.

  • Stem Cells